

Mudit Sharma, MD Prince William Pain Symposium

October 18th, 2008

I do not have any financial interest in any of the companies discussed, nor have I received any compensation from these companies for my presentation.

Overview / Objectives

- Current and emerging chronic pain management algorithms
- Overview and treatment options:
 - Chronic back and/or leg pain
 - Complex regional pain syndrome (CRPS)
 - Failed back surgery syndrome (FBSS)
- Neurostimulation Therapy: Trial to implant
- Clinical evidence: Neurostimulation
- Multidisciplinary approach to chronic pain management

Pain Treatment Ladder

Neuroablation (Chemical or Surgical) **Behavioral Modification Intrathecal Pain Therapy Long-Term Oral Opioids Neurostimulation Corrective Surgery Interventional Techniques NSAIDs/Neuropathic Pain Agents**

1. Stamatos JM. Live Your Life Pain Free. Magni Company. January 2005.

A Review of Chronic Back and Leg Pain

Chronic Back and Leg Pain Statistics

Chronic back and/or leg pain is a common medical condition:

- Up to 80% of the population experience an episode over a lifetime¹
- One of the leading causes of disability, with multiple etiologies²
- Between 10% and 40% of patients who have undergone lumbosacral spine surgery in the U.S. experience persistent or recurrent pain.³

Impact / burden of Chronic pain:

- Total costs exceed \$100 billion annually in the U.S. alone.⁴
- Cancer pain costs of care are estimated at \$12 billion per year.⁵
- Americans spend \$4 billion per year on medications for chronic, recurrent headaches.⁵
- The estimated cost for treating recurrent facial and neck pain is approximately \$1.9 billion per year.⁵

1. Miller B et al. *Pain Practice*. 2005;5:190-202. **2.** Rozen D. *Pain Practice*. 2005;5:228-243. **3.** North RB et al. *Neurosurgery*. 2005;56:98-107. **4.** Katz JN. *J Bone Joint Surg Am*. 2006;88:21-24. **5.** Medical Data International, Rep. 1260.

Treating Chronic Back and/or Leg Pain

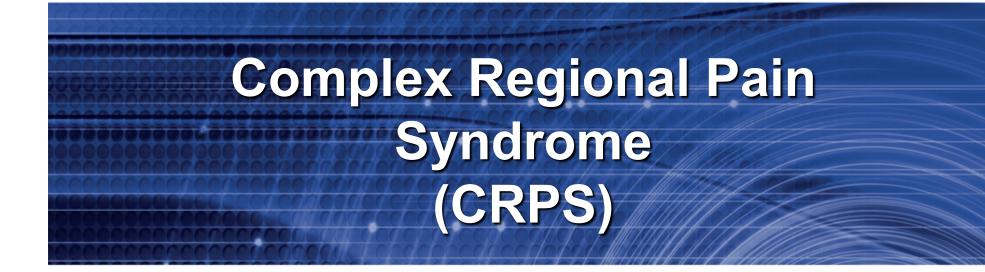
Non-Interventional Approach

Encourage patients to engage in normal physical activity to maintain function as much as possible

- Rehabilitation
- Pharmacotherapy (e.g. nonsteroidal antiinflammatory drugs [NSAIDs]; opioid analgesics; nonopioid analgesics)
- Behavioral therapy (eg, psychotherapy)
- Other therapies (eg, acupuncture)

Surgical Approach

May be used when there are degenerative changes at one or two levels and when non-interventional approaches fail


- Surgical resection of the disc herniation (discectomy)
- Laminectomy
- Intervertebral disk replacement
- Interbody infusion (intervertebral injury)

Interventional Approach

- Optimize pain management through a balance of conservative treatments and less invasive interventional options
- Neuromodulation (therapeutic blocks/infusion; transcutaneous electrical nerve stimulation [TENS])
- Neurostimulation
- Intrathecal drug delivery (IDD)
- Neuroablation (radiofrequency; sympathectomy)

Potential Candidates for Neurostimulation

Chronic Pain Overview and Treatment Options

Complex Regional Pain Syndrome (CRPS) Overview

CRPSI and II are chronic pain syndromes characterized by severe pain accompanied by autonomic changes in the painful region, including edema, temperature abnormalities, sudomotor activity and skin color changes. CRPS affects up to 1.2 million Americans^{1,2,3}

- CRPS develops in response to a traumatic physical event, such as an accident or medical procedure
 - Even "minor" accidents, such as a sprain, can be the cause of CRPS
- CRPS causes nerves to misfire, sending constant pain signals to the brain
- Typically, patients with CRPS see an average of 5 doctors before being accurately diagnosed

^{1.} Stanton-Hicks MD, An update interdisciplinary clinical pathway for CRPS: report of an expert panel. Pain Practice. 2002; vol 2, no. 1, 1-16. **2.** Reflex Sympathetic Dystrophy Syndrome Association (RSDA). CRPS Treatment Guidelines. June 2006. **3.** RSDA. CRPS/RSD Fact Sheet, CRPS Treatment Guidelines. June 2006.

Complex Regional Pain Syndrome (CRPS) Overview

Original IASP Diagnostic Criteria for CRPS Types I and II ^{1 * †}:

- The presence of an initiating noxious event, or cause of immobilization
- Continuing pain, allodynia, or hyperalgesia with which the pain is disproportionate to any inciting event
- Evidence at some point in time of edema, changes in skin blood flow, or abnormal sudomotor activity in the region of pain
- This diagnosis is excluded by the existence of conditions that would otherwise account for the degree of pain and dysfunction

An international consensus group has reviewed validation studies of these diagnostic criteria and have proposed revised criteria.

RSDA. CRPS Treatment Guidelines. June 2006. 2. RSDA. CRPS/RSD Fact Sheet. CRPS Treatment Guidelines. June 2006. *CRPS Type I: without evidence of major nerve damage. [†]CRPS Type II: with evidence of major nerve damage.

Clinical Diagnostic Criteria for CRPS: Proposed by Budapest Consensus Group

Criteria	Sensory	Vasomotor	Sudomotor/ Edema	Motor/ Trophic
 Continuing pain which is disproportionate to any inciting event 	n/a	n/a	n/a	n/a
2. Must report at least one symptom in three of the four categories:	Reports of hyperesthesia and/or allodynia	Reports of temperature asymmetry and/or skin color changes and/or skin color asymmetry	Reports of edema and/or sweating changes and/or sweating asymmetry	Reports of decreased range of motion and/or motor dysfunction (weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin)
3. Must display at least one sign (a sign is counted only if it is observed at time of diagnosis) at time of evaluation or two or more of the following:	Evidence of hyperalgesia (to pinpoint) and/or allodynia (to light touch and/or deep somatic pressure and/or joint movement)	Evidence of temperature asymmetry and/or skin color changes and/or asymmetry	Evidence of edema and/or sweating changes and/or sweating asymmetry	Evidence of decreased range of motion and/or motor dysfunction (weakness, tremor, dystonia) and/or trophic changes (hair, nail, skin)
4. There is no other diagnosis that better explains the signs and symptoms	n/a	n/a	n/a	n/a

Interventional Management of CRPS

Treatment may include medication, physical therapy, psychotherapy, sympathetic nerve blocks, sympathectomy, and/or neurostimulation

Interventional Pain Treatment Algorithm for CRPS Type I¹

Minimally Invasive Therapies

- Sympathetic Nerve Blocks
- IV Regional Blocks
- Somatic Nerve Blocks

More Invasive Therapies

- Epidural and Plexus Catheter Block(s)
- Neurostimulation
- Intrathecal Drug Infusion (eg, Baclofen)

Surgical and Experimental Therapies

- Sympathectomy
- Motor Cortex Stimulation

1. RSDA. CRPS Treatment Guidelines. June 2006.

Overview of Failed Back Surgery Syndrome (FBSS)

Definition of FBSS: Chronic Pain That Persists After Surgery¹

Patients with FBSS have failed to obtain long-term pain relief, even after treatment with a variety of therapies, including¹:

Incidence and Economic Concerns

In the United States, FBSS affects up to 40% of patients who undergo spinal surgery each year^{1,2}

- Over 9,000 patients per year may be candidates for neurostimulation, based on predicted FBSS rates from failed surgeries³
- Over 5 years, treatment with conventional pain therapies can cost more than \$38,000 per patient ⁴*

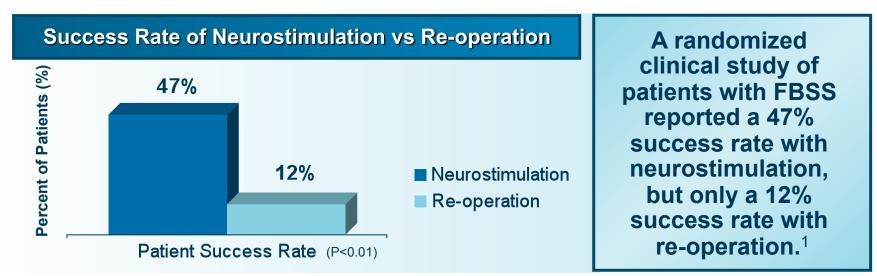
*Does not take into account indirect costs such as lost wages and reduced productivity.
1. North RB et al. *Neurosurgery*. 2005;56:98-107.
2. Stojanovic MP. *Curr Pain Head Rep*. 2001;5:130-137.
3. Segal R et al. *Neurol Res*. 1998;20:391-396.
4. Kumar K et al. *Neurosurgery*. 2002;51:106-116.

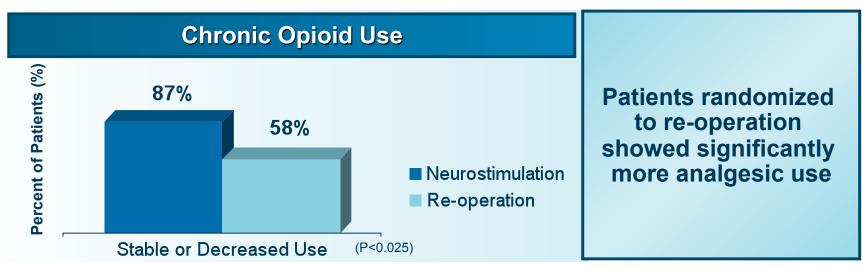
Diagnosing and Managing FBSS

- Structural causes can be identified post-operatively by CT scan, MRI, myelogram, or X-ray
- If no structural cause can be found, the persistent pain may be neuropathic—caused by the prolongation of the original condition
- A patient may be a candidate for neurostimulation

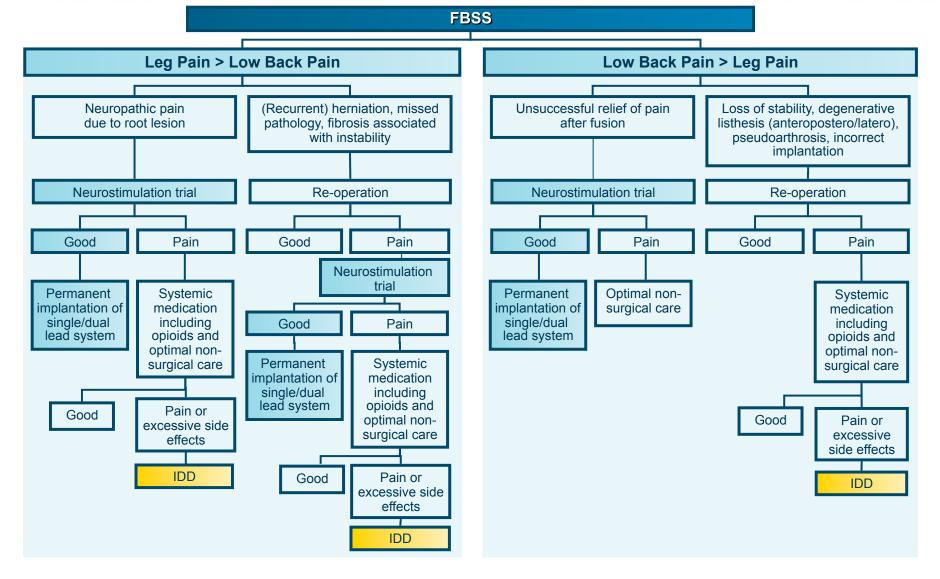
Managing FBSS Brings About Numerous Challenges for Patients and Clinicians¹:

1. De Andrés J, Van Buyten J-P. Pain Practice. 2006;6:39-45.


Common Treatments for FBSS

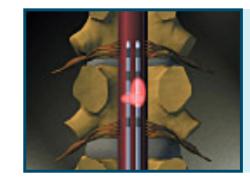


One retrospective study showed a success rate for 102 patients with repeat operation of only 34%.¹ If these treatments are unsuccessful, neurostimulation is an excellent alternative option.


Neurostimulation vs Re-operation: A Single Center Study

1. North RB et al. *Neurosurgery*. 2005;56:98-107. Success was defined as ≥50% pain relief.

Consensus Algorithm for Treating FBSS: Neurostimulation Compared With Re-operation and/or Eventual Intrathecal Drug Delivery (IDD)


1. Gybels J, Erdine S, Maeyaert J, et al. Neuromodulation of pain. Eur J Pain. 2006;2:203-209.

Neurostimulation: A Customized Alternative Treatment Option

Defining Neurostimulation

Neurostimulation is:

• A therapy that alleviates pain by sending electrical stimulation via implanted leads to electrodes in the epidural space

Neurostimulation activates pain-inhibiting neuronal circuits in the dorsal horn and induces a tingling sensation (paresthesia) that masks the sensations of pain.

Goal of Neurostimulation:

- Maintain at least a 50% reduction in pain at 1 year post-implant¹
- Improved HRQoL as assessed by the Short Form questionnaire (SF-36)
- Improved functionality as measured by the Oswestry Disability Index (ODI)

Defining Neurostimulation: Neuropathic Pain

- Neuropathic pain is associated with injury to the peripheral nervous system or the spinal cord.
- This pain is perceived as shooting, shock-like pain with severe burning or aching sensations:
 - May have tingling, numbress, or itching
 - Severe cases have a ripping or tearing sensation
- Neuropathic pain is often responsive to neurostimulation.

Defining Neurostimulation: Nociceptive Pain

- Nociceptive pain is activated in response to tissue damage or inflammation arising from receptors sensitive to noxious stimuli.
- It can be perceived as
 - well localized, constant, aching, throbbing, dull, vague, or a pressured feeling
 - poorly localized and diffuse
- Nociceptive pain is often responsive to opioid treatment.

Indications for Neurostimulation

Most Common Indications for Neurostimulation¹⁻³

FBSS-associated chronic pain

Refractory neuropathic back and leg pain

Sympathetically mediated pain, specifically Complex Regional Pain Syndrome (CRPS) Types I and II

Neurostimulation is perhaps best utilized for the treatment of neuropathic pain of peripheral origin vs. nociceptive origin.^{1,2}

Meyerson BA, Linderoth B. *Neurol Res*. 2000;22:285-292.
 Gybels J et al. *Eur J Pain*. 1998;2:203-209.
 De Andrés J, Van Buyten J-P. *Pain Practice*. 2006;6:39-45.

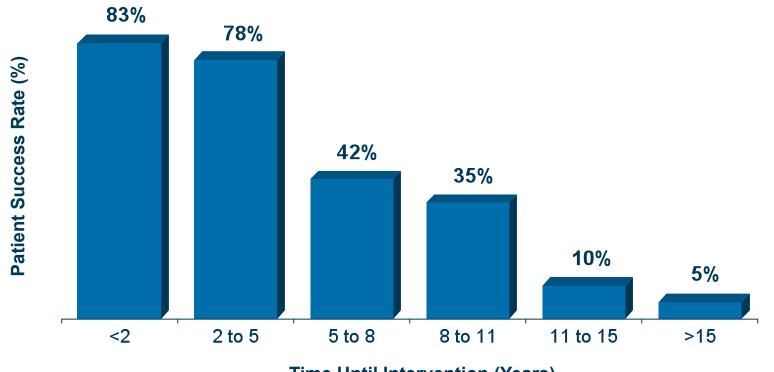
Patient Selection

- Objective evidence of pathology
 - Use appropriate diagnostic studies to establish pain etiology; to rule out other causes such as a tumor
- Inadequate pain relief and/or intolerable side effects after treatment with more conservative therapies
- Psychological evaluation
 - Is the patient physically and mentally able to handle the procedure and associated maintenance and/or follow-up?
- Absence of drug-seeking behavior
- Patients with predominant nociceptive pain may not respond to treatment with neurostimulation
- Potentially adverse psychosocial factors should also be considered prior to treatment with neurostimulation:
 - Non-compliance to treatment
 - Severe depression
 - Untreated drug dependency

Factors Associated with Success

Clinical Factors:

- Pain etiology
- Treating as early as possible
 - Evidence suggests early intervention yields better efficacy¹
- In FBS, consider neurostimulation before re-operation¹⁻⁴
- Successful screening trial
- Matching patient energy demand and pain coverage needs with device selection


Individual Patient Attributes:

- Knowledge about neurostimulation and what to expect in terms of pain relief
- Support system (i.e., family, friends)
- Ability to operate implanted device (trialing, recharging, patient programmer, etc)

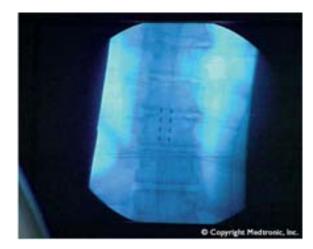
Kumar K et al. Surg Neurol. 1998;50:110-121.
 De Andrés J, Van Buyten J-P. Pain Practice. 2006;6:39-45.
 North RB et al. Neurosurgery. 2005;56:98-107.
 Stojanovic MP, Abdi S. Pain Physician. Vol. 5, No. 2, 2002

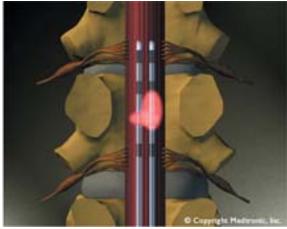
Advantage of Earlier Intervention

A retrospective study showed an inverse relationship between the onset of the chronic pain syndrome and SCS therapy success.¹

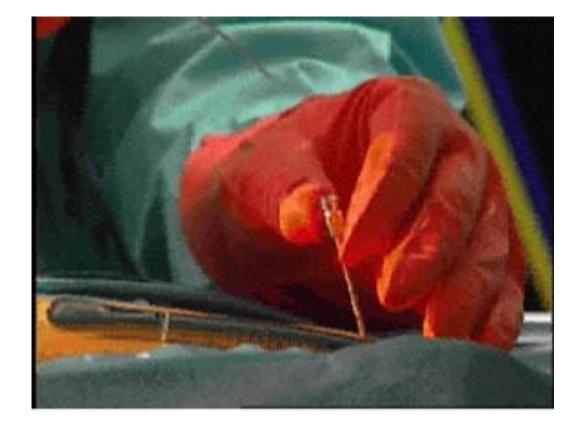
Time Until Intervention (Years)

1. Kumar K et al. Neurosurgery. 2006;58:481-496.


Neurostimulation: Trial to Implant


Neurostimulation

- Neurostimulation is a pain treatment that delivers low voltage electrical stimulation to the spinal cord to inhibit or block the sensation of pain
- Trial screening to evaluate patient response to neurostimulation is performed prior to committing to a full implant


Overview of Trial Procedure

- A percutaneous lead is positioned in the epidural space on the dorsal aspect of the spinal cord at the appropriate nerve root level(s).
- Electrical current from the lead generates paresthesias that can be adjusted in intensity and location to achieve the best pain coverage.
- Leads are attached to an external pulse generator (screener) which supplies the current.
- Patients can use the screener to adjust stimulation to meet pain management needs.

Percutaneous Lead Placement

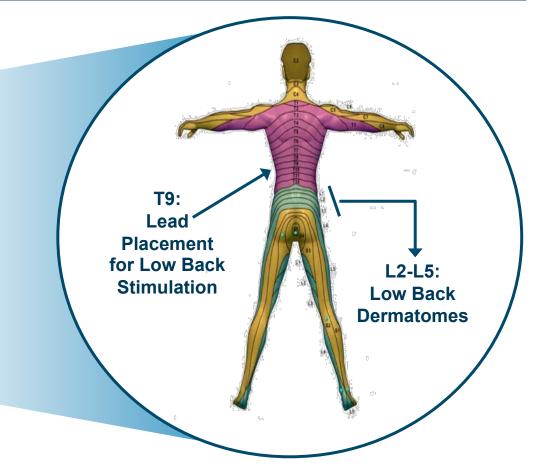
Advantages of Implanted Neurostimulators for Pain

- Effective method of pain control¹
- Screening trial allows patient response to be tested before a full implant
- Systems reprogrammable without surgery
- Patient control within physician set limits
- Non-destructive procedure compared with surgical alternatives
- Reduction of pain medications²

Optimal Lead Positioning and Contact Options

Optimal lead position:

- Posterior epidural space
- Ipsilateral to the pain area
- Rostral to the highest corresponding dermatomal area of pain

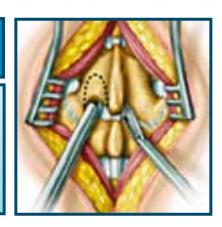

Number of contacts used and contact placement are dictated by the area of pain:

- Bilateral pain often requires 2 leads to cover all painful areas
- Pain from FBS may be best managed with multiple lead systems. Tranverse tripolar lead configurations may also be considered.¹
- Leads should be placed as close to the physiological midline or the spinal cord as possible, so that contacts are closer to the dorsal column and stimulation gets where it is needed most²
 - Dual leads should be placed closely to the right and left of the midline²

Lower Back Stimulation: Lead Placement

Dermatomes—regions of the body where sensation may be felt relative to the spinal cord and spinal column—vary from person to person.¹

- In general, low back dermatomes are L2–L5¹
- Leads should be placed at approximately the T9 level of the spinal segment in order to stimulate low back dermatomes¹
- If a lead is placed off the midline at the T9 level, paresthesia may be felt in the chest wall¹



1. Oakley JC. *Pain Medicine*. 2006;7:S58-S63. Dermatome Chart © Apparelyzed.com.

Lead Options: Laminectomy vs Percutaneous

Surgical Leads

- More invasive than percutaneous, thus may cause patient discomfort¹
- May have less chance of migration after encapsulation due to their shape¹

Percutaneous Leads

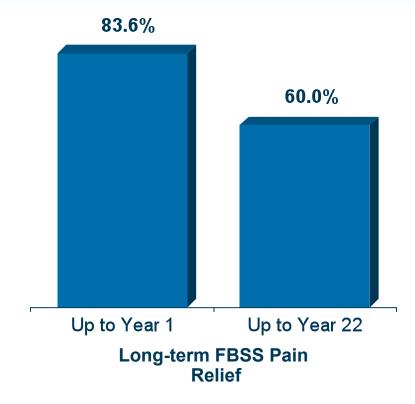
- May reduce patients' insertion-related discomfort²
- May improve implanters' ability to obtain accurate results during trialing²
- Offer longitudinal access to multiple levels of the spine²
- A small amount of silicone elastomer adhesive between the inner surface of the anchoring sleeve and the outer surface of the lead may reduce lead migration²

Neurostimulation: Clinical Evidence

Neurostimulation: Clinical Evidence

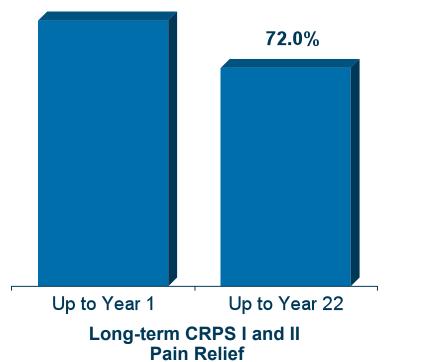
Several studies and numerous case series have been reported in patients with FBSS who have received SCS.

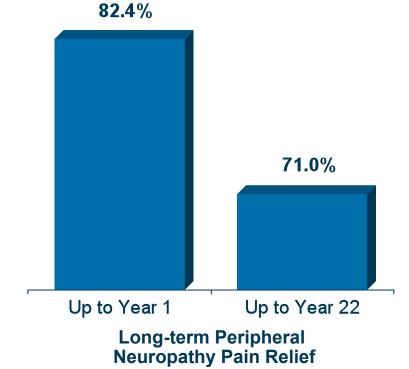
After 10 to 15 years of follow-up, the following was reported:


- Good to excellent response in 68% of patients¹
 - Average pain VAS significantly improved¹
 - Reduction in concomitant pain meds¹
 - Improved effect of medication (greater pain reduction after neurostimulation than before neurostimulation)¹
- Sustained pain relief²

Neurostimulation: Clinical Evidence - Pain Relief

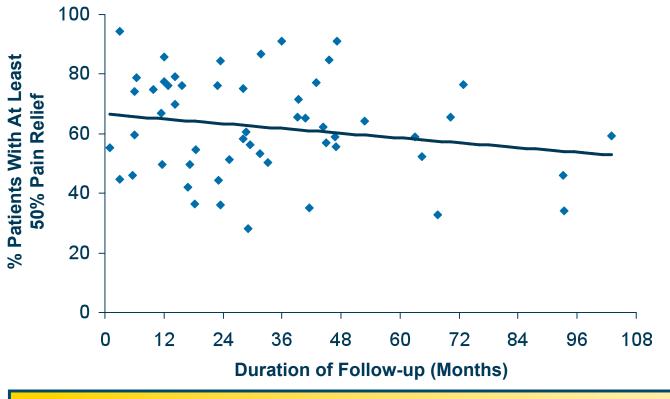
Failed Back Surgery Syndrome: Percentage of patients receiving satisfactory pain relief up to 1 Year and 22 Years (n=220)¹




1. Kumar K et al. *Neurosurgery*. 2006;58:481-496.

Pain Relief (cont'd)

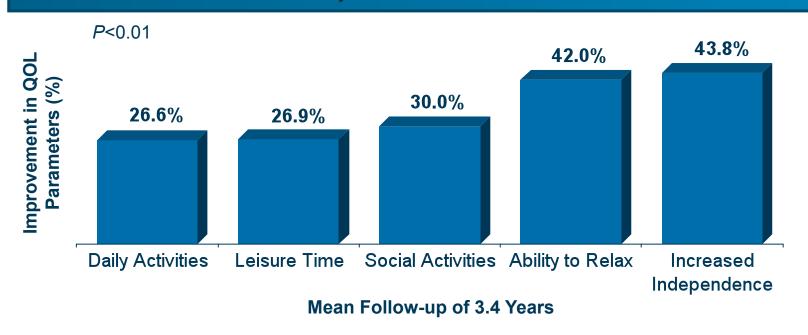
CRPS I / II: Percentage of internalized patients receiving satisfactory pain relief up to 1 year and 22 Years (n=22)¹ Peripheral Neuropathy: Percentage of internalized patients receiving satisfactory pain relief up to 1 Year and 22 Years (n=17)¹



1. Kumar K et al. *Neurosurgery*. 2006;58:481-496.

Pain Relief (cont'd)

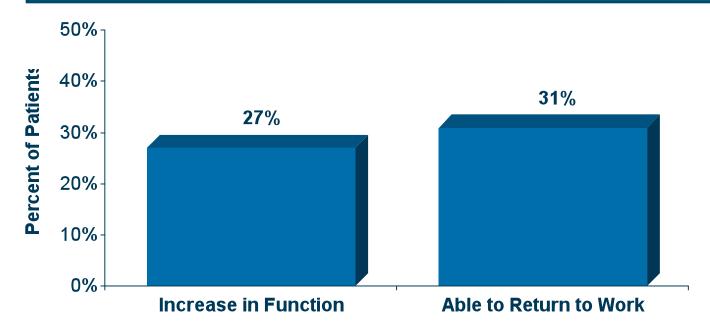
Sustained Pain Relief Over Time With Neurostimulation¹


Sixty-two Percent (62%) of Patients With FBSS Achieve at Least 50% Sustained Long-term Pain Relief With Neurostimulation.¹

1. Taylor R. Spine. 2005;30:152-160.

Quality of Life

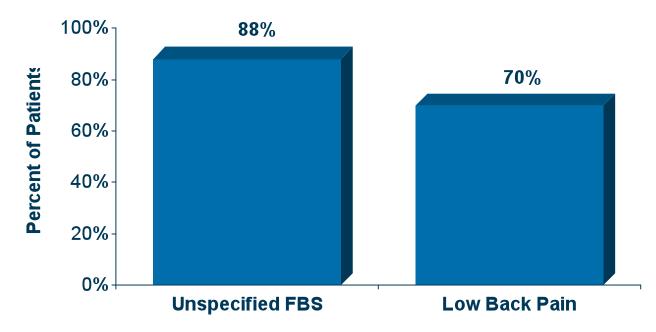
- Evidence indicates neurostimulation improves quality of life (QOL) in patients with FBSS^{1,2}
 - Improved QOL reported in 27% of patients treated with neurostimulation (n=60) versus only 12% of patients treated with conventional pain therapy (n=44)²


Neurostimulation Improves QoL in Patients With FBSS¹

1. Van Buyten J-P et al. *Eur J Pain.* 2001;5:299-307. 2. Kumar K et al. *Neurosurgery.* 2002;51:106-116.

Functional Improvement

Percentage of Patients Experiencing Increased Function and Ability to Return to Work¹⁻³

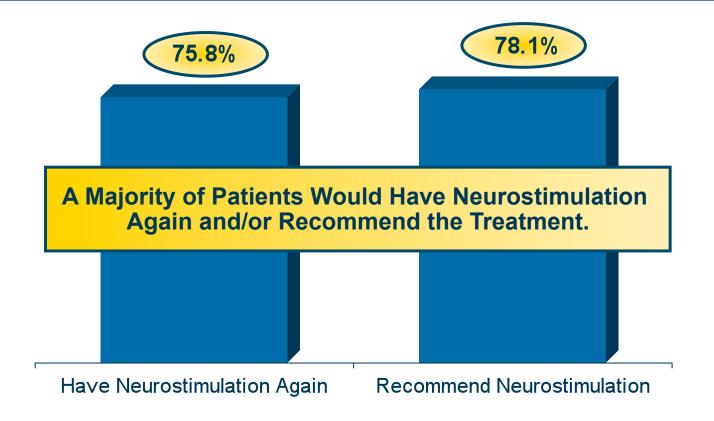


- Patients (41%) with FBSS experienced an increase in function after treatment with neurostimulation¹
- Up to 31% of active patients treated with neurostimulation were able to return to work, resulting from improved pain control and less oral med intake^{2,3}

1. Kumar K et al. *Neurosurgery*. 2006;56:481-496. 2. Van Buyten J-P et al. *Eur J Pain*. 2001;5:299-307.

Patient Satisfaction

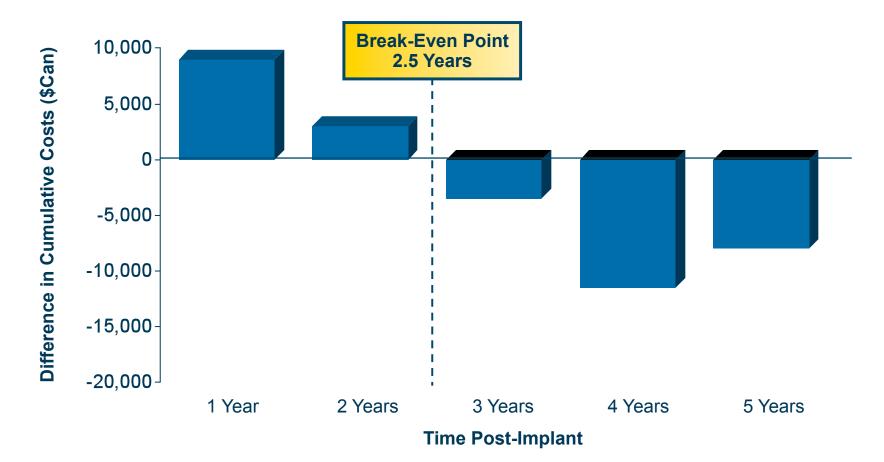
Patient Satisfaction With Neurostimulation^{1,2}



- Eighty-eight percent (88%) of patients with unspecified FBSS were satisfied with neurostimulaiton treatment¹
- Seventy percent (70%) of patients with predominantly axial low back pain were satisfied with neurostimulation treatment²

1. Kumar K et al. *Neurosurgery*. 2002;51:106-116. 2. Ohnmeiss DD, Rashbaum RF. *Spine J*. 2001;1:358-363.

Patient Satisfaction (cont'd)


Patient Satisfaction With Neurostimulation for Predominant Complaints of Chronic Intractable Low Back Pain (% of Patients)¹

1. Ohnmeiss DD, Rashbaum RF. Spine J. 2001;1:358-363.

Cost-Effectiveness

Neurostimulation for FBSS Resulted in a Cost Savings After 2.5 Years Compared With Conventional Medical Management¹

1. Kumar K et al. *Neurosurgery*. 2002;51:106-116.

Benefits of Neurostimulation

- Provides pain reduction/relief
- Trial conducted before fully implanted
- Reversible procedure
- Nondestructive (vs neuroablation)
- Minimally invasive
- May reduce the use of narcotics
- Improves patient ability to perform activities of daily living
- Cost-effective

A Multidisciplinary Approach to Caring for Patients With Chronic Pain

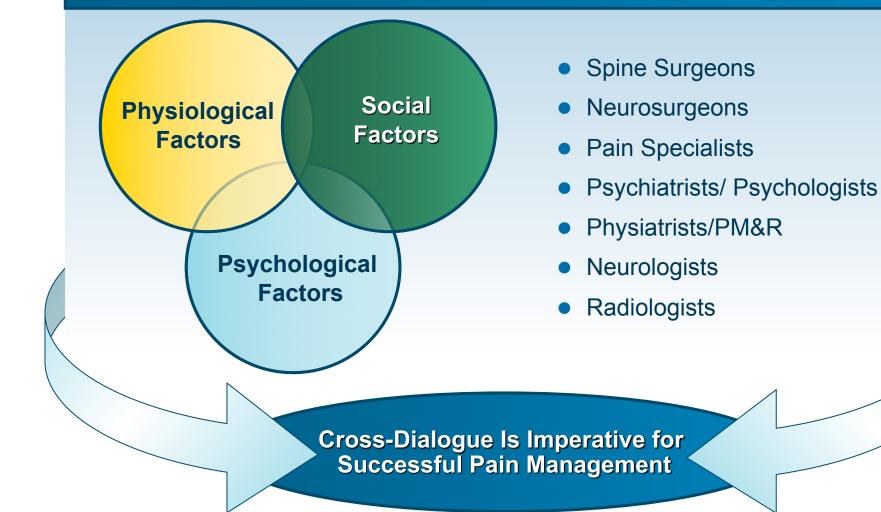
Multiple Risk Factors for Chronic Pain

Individual	 Increasing age Smoking Poor general health Health care provider attitudes Unemployment 	 Obesity Low education level High birth weight (males) High levels of pain/disability
Psychosocial	 Stress Pain behavior Depressive mood Cognitive functioning 	 Distress Somatization Baseline long duration of pain Fear-avoidance behavior
Occupational	 Manual handling of materials Monotonous tasks Job dissatisfaction Social support/work relations Lifting for more than ³/₄ of the day 	 Night shifts Bending and twisting Whole-body vibration Unavailability of light duty

1. Manek N., MacGregor A.J., Epidemiology of back disorders: prevalence, risk factors, and prognosis, Current Opinion in Rheumatology. 2005; 17:134-140.

Chronic Pain Management

Patients With Chronic Pain Often Seek a Myriad of Opinions and See Numerous Physicians of Varying Disciplines for Treatment



- Therefore, an open dialogue among managing physicians is needed for:
 - Sharing pertinent patient information
 - Coordination of treatment plan
 - Enable roundtable of multidisciplinary expertise for considering treatment options
 - Provide timely, appropriate, cost-effective treatment, thus increasing the quality of health care and quality of life for patients with chronic pain¹

^{1.} De Andrés J, Van Buyten J-P. Pain Practice. 2006;6:39-45.

A Multidisciplinary Team Approach

Complex Patient Problem = Interdisciplinary Management

Neurostimulation Referral Checklist¹

More conservative therapies have failed
 An observable pathology exists that is concordant with the pain complaint
 Further surgical intervention is not indicated
 No serious untreated drug habituation exists
 Psychological evaluation and clearance for implantation has been obtained

No contraindications to implantation exist

Refer Patient for a Neurostimulation Trial

Neurostimulation Summary

Neurostimulation: Clinical Summary

- Neurostimulation provides a treatment option that is:
 - Less invasive than surgery
 - Reversible
 - Customizable
 - Cost-effective
- Screening trials allow evaluation of patient response prior to an implant
- Neurostimulation provides ≥50% sustained pain relief in 62% of patients with persistent or recurrent FBSS¹
- Improved functional capacity and reduced use of analgesics¹
- Multipolar and multichannel electrode systems may have significant advantages in providing long-term pain relief²

^{1.} Taylor R. *Spine*. 2005;30:152-160. **2.** Kumar K et al. *Neurosurgery*. 2006;58:481-496.

^{3.} Kumar K et al. *Surg Neurol*. 1998;50:110-121.

Combining Advancements for Successful Outcomes With Neurostimulation

- The percentage change of patients with long-term successful pain relief has increased in the past decade ¹
 - Improved patient selection criteria, improved accuracy in contact placement, and improvements made to the multipolar and multichannel devices¹
 - Neurostimulation is safe, effective, and reversible³
- Additional ways to improve outcomes:
 - Work as a multidisiplinary team: health care professionals can make decisions that may change the course of a patient's life
 - Utilize advanced treatment options: to improve the quality of life for patients with chronic pain²

Acknowledgements

Thanks to Tony Jawhar from ABI and Miranda McElligott-Weitz from Medtronic for providing material for this presentation.

References

De Andrés, Van Buyten J-P. Neural modulation by stimulation. *Pain Practice*. 2006;1:39-45.

Gybels J, Erdine S, Maeyaert J, et al. Neuromodulation of pain. *Eur J Pain*. 2006;2:203-209.

Katz JN. Lumbar disc disorders and low-back pain: socioeconomic factors and consequences. *J Bone Joint Surg Am*. 2006;88:21-24.

Krames ES. Intraspinal opioid therapy for chronic nonmalignant pain: current practice and clinical guidelines. *J Pain Symptom Manage*. 1996;11:333-352.

Kumar K, Hunter G, Demeria D. Spinal cord stimulation in treatment of chronic benign pain: challenges in treatment planning and present status, a 22-year experience. *Neurosurgery*. 2006;58:481-496.

Kumar K, Malik S, Demeria D. Treatment of chronic pain with spinal cord stimulation versus alternative therapies: cost-effectiveness analysis. *Neurosurgery*. 2002;51:106-116.

Kumar K, Toth C, Nath RK, Laing P. Epidural spinal cord stimulation for the treatment of chronic pain—some predictors of success. A 15-year experience. *Surg Neurol.* 1998;50:110-121.

Meyerson BA, Linderoth B. Mechanisms of spinal cord stimulation in neuropathic pain. *Neurol Res.* 2000;22:285-292.

Miller B, Gatchel RJ, Lou L, Stoweel A, Robinson R, Polatin PB. Interdisciplinary treatment of failed back surgery syndrome (FBSS): a comparison of FBSS and non-FBSS patients. *Pain Practice*. 2005;5:190-202.

North RB, Kidd DH, Farrokhu F, Piantadosi SA. Spinal cord stimulation versus repeated lumbosacral spine surgery for chronic pain: a randomized, controlled trial. *Neurosurgery*. 2005;56:98-107.

North RB, Kidd DH, Petrucci L, Dorsi MJ. Spinal cord stimulation electrode design: a prospective, randomized, controlled trial comparing percutaneous with laminectomy electrodes: part II—clinical outcomes. *Neurosurgery*. 2005;57:990-996.

Oakley JC. Spinal cord stimulation in axial low back pain: solving the dilemma. *Pain Medicine*. 2006;7:S58-S63.

References (cont'd)

Ohnmeiss DD, Rashbaum RF. Patient satisfaction with spinal cord stimulation for predominant complaints of chronic, intractable low back pain. *Spine J.* 2001;1:358-363.

Reflex Sympathetic Dystrophy Syndrome Association. Complex Regional Pain Syndrome: Treatment Guidelines. June 2006.

Reflex Sympathetic Dystrophy Syndrome Association. CRPS/RSD Fact Sheet. Available at: http://www.rsds.org. Accessed September 18, 2006.

Renard VM, North RB. Percutaneous electrode migration in spinal cord stimulation: problem and solution. *Neuromodulation*. 2006;9:12-13.

Rozen D, Grass GW. Intradiscal electrothermal coagulation and percutaneous neuromodulation therapy in the treatment of discogenic low back pain. *Pain Practice*. 2005;5:228-243.

Segal R, Stacey BR, Rudy TE, Baser S, Markham J. Spinal cord stimulation revisited. *Neurol Res.* 1998;20:391-396.

Stamatos JM. Live Your Life Pain Free: Medical Discoveries That Stop Chronic Pain. Magni Company; January 2005.

Stojanovic MP. Stimulation methods for neuropathic pain control. *Curr Pain Head Rep.* 2001;5:130-137.

Stojanovic MP, Abdi S. Spinal Cord Stimulation-Focused Review. Pain Physician. Vol. 5, No. 2, 2002

Taylor RS, Van Buyten J-P, Buchsor E. Spinal cord stimulation for chronic back and leg pain and failed back surgery syndrome: a systematic review and analysis of prognostic factors. *Spine*. 2005;30:152-160.

Van Buyten J-P, Van Zundert J, Vueghs, Vanduffel L. Efficacy of spinal cord stimulation: 10 years of experience in a pain centre in Belgium. *Eur J Pain*. 2001;5:299-307.

Van Buyten J-P, Lazorthes Y, Spincemaille G, et al. Patient ability to recharge the RESTORE Rechargeable Neurostimulation System. Presented at: American Association of Neurological Surgeons Annual Meeting; April 22-27, 2006; San Francisco, Calif.

van Zundert J, van Kleef M. Low back pain: from algorithm to cost-effectiveness? *Pain Practice*. 2005;5:179-189.

Yearwood TL. Neuropathic extremity pain and spinal cord stimulation. Pain Medicine. 2006;7:S97-S102.